Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nontuberculous mycobacteria (NTM) are environmental bacteria that may cause chronic lung disease. Environmental factors that favor NTM growth likely increase the risk of NTM exposure within specific environments. We aimed to identify water-quality constituents (Al, As, Cd, Ca, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Na, Zn, and pH) associated with NTM disease across Colorado watersheds. We conducted a geospatial, ecological study, associating data from patients with NTM disease treated at National Jewish Health and water-quality data from the Water Quality Portal. Water-quality constituents associated with disease risk were identified using generalized linear models with Poisson-distributed discrete responses. We observed a highly robust association between molybdenum (Mo) in the source water and disease risk. For every 1- unit increase in the log concentration of molybdenum in the source water, disease risk increased by 17.0%. We also observed a statistically significant association between calcium (Ca) in the source water and disease risk. The risk of NTM varied by watershed and was associated with watershed-specific water-quality constituents. These findings may inform mitigation strategies to decrease the overall risk of exposure.more » « less
-
Loss of small mineral particles from soil has been suggested as a process that can produce net isotopic fractionation in the remaining soil. We extracted water dispersible colloids (WDCs) from bulk soil collected at the Susquehanna/Shale Hills Critical Zone Observatory (SSHO) and measured their Fe isotopic composition for comparison to published data from the site. The goal was to explain soil δ56Fe values that become lighter as Fe is lost from soil. The range of δ56Fe values for WDCs was 0.22 to 0.59 ‰, barely intersecting the value of ~0.8 ± 0.3‰ predicted by mass balance for particulate Fe loss by a previous study. The WDCs extracted likely represent a mixture of unfractionated Fe inherited from shale minerals and secondary Fe fractionated by weathering zone processes. Thus, although the WDC compositions do not confirm small mineral particle losses as causing overall Fe isotope fractionation in SSHO soils, they are compatible with that interpretation.more » « less
An official website of the United States government

Full Text Available